1. $\cot ^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right]=$
(a) $\pi-x$
(b) $2 \pi-x$
(c) $\frac{x}{2}$
(d) $\pi-\frac{x}{2}$
2. The principal value of $\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]$ is
(a) $-\frac{2 \pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{4 \pi}{3}$
(d) None of these
3. If $\theta=\tan ^{-1} \mathrm{a}, \phi=\tan ^{-1} \mathrm{~b}$ and $\mathrm{ab}=-1$, then $\theta-\phi=$
(a) 0
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{2}$
(d) None of these
4. If the sides of triangle are $13,14,15$, then the radius of its incircle is
(a) $\frac{67}{8}$
(b) $\frac{65}{4}$
(c) 4
(d) 24
5. The inradius of the triangle whose sides are $3,5,6$, is
(a) $\sqrt{8 / 7}$
(b) $\sqrt{8}$
(c) $\sqrt{7}$
(d) $\sqrt{7 / 8}$
6. Let z, w be complex numbers such that $\bar{z}+i \bar{w}=0$ and $\arg \mathrm{zw}=\pi$. Then $\arg \mathrm{z}$ equals
(a) $5 \pi / 4$
(b) $\pi / 2$
(c) $3 \pi / 4$
(d) $\pi / 4$
7. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}$, then the value of $C_{0}-C_{2}+C_{4}-C_{6}+\ldots$. is
(a) 2^{n}
(b) $2^{n} \cos \frac{n \pi}{2}$
(c) $2^{n} \sin \frac{n \pi}{2}$
(d) $2^{n / 2} \cos \frac{n \pi}{4}$
8. If $x=\cos \theta+i \sin \theta$ and $y=\cos \phi+i \sin \phi$, then $x^{m} y^{n}+x^{-m} y^{-n}$ is equal to
(a) $\cos (m \theta+n \phi)$
(b) $\cos (m \theta-n \phi)$
(c) $2 \cos (m \theta+\mathrm{n} \phi)$
(d) $2 \cos (m \theta-n \phi)$
9. The value of $\sum_{r=1}^{8}\left(\sin \frac{2 r \pi}{9}+i \cos \frac{2 r \pi}{9}\right)$ is
(a) -1
(b) 1
(c) i
(d) -i
10. If $T_{0}, T_{1}, T_{2}, \ldots . T_{n}$ represent the terms in the expansion of $\quad(x+a)^{n}, \quad$ then $\quad\left(T_{0}-T_{2}+T_{4}-\ldots .\right)^{2}$ $+\left(T_{1}-T_{3}+T_{5}-\ldots .\right)^{2}=$
(a) $\left(x^{2}+a^{2}\right)$
(b) $\left(x^{2}+a^{2}\right)^{n}$
(c) $\left(x^{2}+a^{2}\right)^{1 / n}$
(d) $\left(x^{2}+a^{2}\right)^{-1 / n}$
11. For every positive integer $n, 2^{n}<n$! when
(a) $\mathrm{n}<4$
(b) $n \geq 4$
(c) $\mathrm{n}<3$
(d) None of these
12. m men and n women are to be seated in a row so that no two women sit together. If $m>n$, then the number of ways in which they can be seated is
(a) $\frac{m!(m+1)!}{(m-n+1)!}$
(b) $\frac{m!(m-1)!}{(m-n+1)!}$
(c) $\frac{(m-1)!(m+1)!}{(m-n+1)!}$
(d) None of these
13. A five digit number divisible by 3 has to formed using the numerals $0,1,2,3,4$ and 5 without repetition. The total number of ways in which this can be done is
(a) 216
(b) 240
(c) 600
(d) 3125
14. The centre of the circle passing through $(0,0)$ and $(1,0)$ and touching the circle $x^{2}+y^{2}=9$ is
(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(b) $\left(\frac{1}{2},-\sqrt{2}\right)$
(c) $\left(\frac{3}{2}, \frac{1}{2}\right)$
(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$
15. If $\left(m_{i}, \frac{1}{m_{i}}\right), i=1,2,3,4$ are con-cyclic points, then the value of $m_{1} \cdot m_{2} \cdot m_{3} \cdot m_{4}$ is
(a) 1
(b) -1
(c) 0
(d) None of these
16. The equation of the parabola with its vertex at the origin, axis on the y-axis and passing through the point $(6,-3)$ is
(a) $y^{2}=12 x+6$
(b) $x^{2}=12 y$
(c) $x^{2}=-12 y$
(d) $y^{2}=-12 x+6$
17. Focus and directrix of the parabola $x^{2}=-8 a y$ are
(a) $(0,-2 a)$ and $y=2 a$
(b) $(0,2 a)$ and $y=-2 a$
(c) $(2 \mathrm{a}, 0)$ and $\mathrm{x}=-2 \mathrm{a}$
(d) $(-2 a, 0)$ and $x=2 a$
18. A hyperbola passes through the points $(3,2)$ and $(-17,12)$ and has its centre at origin and transverse axis is along x-axis. The length of its transverse axis is
(a) 2
(b) 4
(c) 6
(d) None of these
19. The locus of the point of intersection of the lines $\sqrt{3} x-y-4 \sqrt{3} k=0$ and $\sqrt{3} k x+k y-4 \sqrt{3}=0 \quad$ for different value of k is
(a) Circle
(b) Parabola
(c) Hyperbola
(d) Ellipse
20. If the centre, one of the foci and semi-major axis of an ellipse be $(0,0),(0,3)$ and 5 then its equation is
(a) $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
(b) $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
(c) $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
(d) None of these
21. The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y=12$, is
(a) $95 x^{2}+144 y^{2}=4655$
(b) $144 \mathrm{x}^{2}+95 \mathrm{y}^{2}=4655$
(c) $95 x^{2}+144 y^{2}=13680$
(d) None of these
22. The derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$ at $x=0$, is
(a) $\frac{1}{8}$
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) 1
23. If $y^{2}=p(x)$ is a polynomial of degree three, then $2 \frac{d}{d x}\left\{y^{3} \cdot \frac{d^{2} y}{d x^{2}}\right\}=$
(a) $p^{\prime \prime \prime}(x)+p^{\prime}(x)$
(b) $p^{\prime \prime}(x) \cdot p^{\prime \prime \prime}(x)$
(c) $p(x) \cdot p^{\prime \prime \prime}(x)$
(d) Constant
24. Let $f(x)$ and $g(x)$ be two functions having finite nonzero $3^{\text {rd }}$ order derivatives $f^{\prime \prime \prime}(x)$ and $g^{\prime \prime \prime}(x)$ for all, $x \in R$. If $f(x) g(x)=1$ for all $x \in R$, then $\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{g^{\prime \prime \prime}}{g^{\prime}}$ is equal to
(a) $3\left(\frac{f^{\prime \prime}}{g}-\frac{g^{\prime \prime}}{f}\right)$
(b) $3\left(\frac{f^{\prime \prime}}{f}-\frac{g^{\prime \prime}}{g}\right)$
(c) $3\left(\frac{g^{\prime \prime}}{g}-\frac{f "}{g}\right)$
(d) $3\left(\frac{f^{\prime \prime}}{f}-\frac{g^{\prime \prime}}{f}\right)$
25. If $I_{n}=\frac{d^{n}}{d x^{n}}\left(x^{n} \log x\right)$, then $I_{n}-n I_{n-1}=$
(a) n
(b) $n-1$
(c) n !
(d) $(\mathrm{n}-1)$!
26. If $x=\sin t$ and $y=\sin p t$, then the value of $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y$ is equal to
(a) 0
(b) 1
(c) -1
(d) $\sqrt{2}$
27. Let $f:(0,+\infty) \rightarrow R$ and $F(x)=\int_{0}^{x} f(t) d t$. If $F\left(x^{2}\right)=x^{2}(1+x)$, then $f(4)$ equals
(a) $\frac{5}{4}$
(b) 7
(c) 4
(d) 2
28. The volume of a spherical balloon is increasing at the rate of 40 cubic centrimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 8 centimetre, is
(a) $\frac{5}{2} \mathrm{sq} \mathrm{cm} / \mathrm{min}$
(b) $5 \mathrm{sq} \mathrm{cm} / \mathrm{min}$
(c) $10 \mathrm{sq} \mathrm{cm} / \mathrm{min}$
(d) $20 \mathrm{sq} \mathrm{cm} / \mathrm{min}$
29. If $\int \frac{d x}{1+\sin x}=\tan \left(\frac{x}{2}+a\right)+b$, then
(a) $\mathrm{a}=\frac{\pi}{4}, \mathrm{~b}=3$
(b) $\mathrm{a}=-\frac{\pi}{4}, \mathrm{~b}=3$
(c) $\mathrm{a}=\frac{\pi}{4}, \mathrm{~b}=$ arbitrary constant
(d) $\mathrm{a}=-\frac{\pi}{4}, \mathrm{~b}=$ arbitrary constant
30. $\int \frac{d x}{\sin x+\cos x}=$
(a) $\log \tan \left(\frac{\pi}{8}+\frac{x}{2}\right)+c$
(b) $\log \tan \left(\frac{\pi}{8}-\frac{x}{2}\right)+c$
(c) $\frac{1}{\sqrt{2}} \log \tan \left(\frac{\pi}{8}+\frac{x}{2}\right)+c$
(d) None of these
31. The locus of P such that area of $\triangle P A B=12$ sq. units, where $A(2,3)$ and $B(-4,5)$ is
(a) $(x+3 y-1)(x+3 y-23)=0$
(b) $(x+3 y+1)(x+3 y-23)=0$
(c) $(3 x+y-1)(3 x+y-23)=0$
(d) $(3 x+y+1)(3 x+y+23)=0$
32. The position of a moving point in the $X Y$-plane at time t is given by $\left((u \cos \alpha) t\right.$, $\left.(u \sin \alpha) t-\frac{1}{2} g t^{2}\right)$, where u, α, g are constants. The locus of the moving point is
(a) A circle
(b) A parabola
(c) An ellipse
(d) None of these
33. If $\mathrm{A}(\cos \alpha, \sin \alpha), \mathrm{B}(\sin \alpha,-\cos \alpha), \mathrm{C}(1,2)$ are the vertices of a $\triangle A B C$, then as α varies, the locus of its centroid is
(a) $x^{2}+y^{2}-2 x-4 y+1=0$
(b) $3\left(x^{2}+y^{2}\right)-2 x-4 y+1=0$
(c) $x^{2}+y^{2}-2 x-4 y+3=0$
(d) None of these
34. The equations of two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3=0$ and the third side passes through the point $(1,-10)$. The equation of the third side is
(a) $x-3 y-31=0$ butnot $3 x+y+7=0$
(b) $3 x+y+7=0$ but not $x-3 y-31=0$
(c) $3 x+y+7=0$ or $x-3 y-31=0$
(d) Neither $3 x+y+7$ nor $x-3 y-31=0$
35. The graph of the function $\cos x \cos (x+2)-\cos ^{2}(x+1)$ is
(a) A straight line passing through $\left(0,-\sin ^{2} 1\right)$ with slope 2
(b) A straight line passing through $(0,0)$
(c) A parabola with vertex $\left(1,-\sin ^{2} 1\right)$
(d) A straight line passing through the point $\left(\frac{\pi}{2},-\sin ^{2} 1\right)$ and parallel to the x-axis
36. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the side of the triangle is
(a) $\sqrt{\frac{20}{3}}$
(b) $\frac{2}{\sqrt{15}}$
(c) $\sqrt{\frac{8}{15}}$
(d) $\sqrt{\frac{15}{2}}$
37. The general value of θ satisfying the equation $2 \sin ^{2} \theta-3 \sin \theta-2=0$ is
(a) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$
(b) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{2}$
(c) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{5 \pi}{6}$
(d) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$
38. The general solution of the equation $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is
(a) $2 \mathrm{n} \pi \pm \frac{\pi}{4}+\frac{\pi}{12}$
(b) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}+\frac{\pi}{12}$
(c) $2 \mathrm{n} \pi \pm \frac{\pi}{4}-\frac{\pi}{12}$
(d) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{12}$
39. The general solution of $\tan 3 x=1$ is
(a) $\mathrm{n} \pi+\frac{\pi}{4}$
(b) $\frac{\mathrm{n} \pi}{3}+\frac{\pi}{12}$
(c) $\mathrm{n} \pi$
(d) $n \pi \pm \frac{\pi}{4}$
40. The general solution of $\sin ^{2} \theta \sec \theta+\sqrt{3} \tan \theta=0$ is
(a) $\theta=\mathrm{n} \pi+(-1)^{n+1} \frac{\pi}{3}, \theta=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$
(b) $\theta=n \pi, n \in Z$
(c) $\theta=n \pi+(-1)^{n+1} \frac{\pi}{3}, n \in Z$
(d) $\theta=\frac{n \pi}{2}, n \in Z$
41. A person standing on the bank of a river finds that the angle of elevation of the top of a tower on the opposite bank is 45°. Then which of the following statements is correct
(a) Breadth of the river is twice the height of the tower
(b) Breadth of the river and the height of the tower are the same
(c) Breadth of the river is half of the height of the tower
(d) None of the above
42. $A B$ is a vertical pole resting at the end A on the level ground. P is a point on the level ground such that $A P$ $=3 A B$. If C is the mid-point of $A B$ and $C B$ subtends an angle β at \mathbf{P}, the value of $\tan \beta$ is
(a) $\frac{18}{19}$
(b) $\frac{3}{19}$
(c) $\frac{1}{6}$
(d) None of these
43. If $a_{1}, a_{2}, \ldots \ldots, a_{n}$ are in A.P. with common difference, d, then the sum of the following series is $\sin d\left(\operatorname{cosec} a_{1} \cdot \operatorname{cosec} a_{2}+\operatorname{cosec} a_{2} \cdot \operatorname{cosec} a_{3}+\ldots\right.$.
$+\operatorname{cosec} a_{n-1} \operatorname{cosec} a_{n}$)
(a) $\sec a_{1}-\sec a_{n}$
(b) $\cot a_{1}-\cot a_{n}$
(c) $\tan a_{1}-\tan a_{n}$
(d) $\operatorname{cosec} a_{1}-\operatorname{cosec} a_{n}$
44. If the sum of the series $2+5+8+11 \ldots$. is 60100 , then the number of terms are
(a) 100
(b) 200
(c) 150
(d) 250
45. The sum of all natural numbers between 1 and 100 which are multiples of 3 is
(a) 1680
(b) 1683
(c) 1681
(d) 1682
46. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between positive directions of the axes, then a, b, h satisfy the relation
(a) $a+b=2|h|$
(b) $a+b=-2 h$
(c) $a-b=2|\mathrm{~h}|$
(d) $(a-b)^{2}=4 h^{2}$
47. The lines joining the origin to the points of intersection of the line $y=m x+c$ and the circle $x^{2}+y^{2}=a^{2}$ will be mutually perpendicular, if
(a) $a^{2}\left(m^{2}+1\right)=c^{2}$
(b) $a^{2}\left(m^{2}-1\right)=c^{2}$
(c) $a^{2}\left(m^{2}+1\right)=2 c^{2}$
(d) $\mathrm{a}^{2}\left(\mathrm{~m}^{2}-1\right)=2 \mathrm{c}^{2}$
48. Given
that
$\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)\left(x^{2}+c^{2}\right)}=\frac{\pi}{2(a+b)(b+c)(c+a)^{\prime}}$, then the value of $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}$ is
(a) $\frac{\pi}{60}$
(b) $\frac{\pi}{20}$
(c) $\frac{\pi}{40}$
(d) $\frac{\pi}{80}$
49. If $I(m, n)=\int_{0}^{1} t^{m}(1+t)^{n} d t$, then the expression for $I(m, n)$ in terms of $I(m+1, n-1)$ is
(a) $\frac{2^{n}}{m+1}-\frac{n}{m+1} I(m+1, n-1)$
(b) $\left.\frac{n}{m+1} \right\rvert\,(m+1, n-1)$
(c) $\frac{2^{n}}{m+1}+\frac{n}{m+1} l(m+1, n-1)$
(d) $\left.\frac{m}{n+1} \right\rvert\,(m+1, n-1)$
50. $\lim _{n \rightarrow \infty} \frac{1+2^{4}+3^{4}+\ldots .+n^{4}}{n^{5}}-\lim _{n \rightarrow \infty} \frac{1+2^{3}+3^{3}+\ldots+n^{3}}{n^{5}}=$
(a) $\frac{1}{30}$
(b) Zero
(c) $\frac{1}{4}$
(d) $\frac{1}{5}$
51. The greatest and least magnitude of the resultant of two forces of constant magnitude are F and G. When the forces act an angle 2α, the resultant in magnitudes is equal to
(a) $\sqrt{F^{2} \cos ^{2} \alpha+G^{2} \sin ^{2} \alpha}$
(b) $\sqrt{\mathrm{F}^{2} \sin \alpha+\mathrm{G}^{2} \cos ^{2} \alpha}$
(c) $\sqrt{F^{2}+G^{2}}$
(d) $\sqrt{F^{2}-G^{2}}$
52. A horizontal force F is applied to a small object P of mass m on a smooth plane inclined to the horizon at an angle θ. If F is just enough to keep P in equilibrium, then $F=$
(a) $m g \cos ^{2} \theta$
(b) $m g \sin ^{2} \theta$
(c) $\mathrm{mg} \cos \theta$
(d) $\mathrm{mg} \tan \theta$
53. If the position of the resultant of two like parallel forces P and Q is unaltered, when the positions of P and Q are interchanged, then
(a) $P=Q$
(b) $P=2 Q$
(c) $2 P=Q$
(d) None of these
54. Three parallel forces P, Q, R act at three points A, B, C of a rod at distances of $2 \mathrm{~m}, 8 \mathrm{~m}$ and 6 m respectively from one end. If the rod be in equilibrium, then $P: Q: R=$
(a) $1: 2: 3$
(b) $2: 3: 1$
(c) $3: 2: 1$
(d) None of these
55. The resultant of two like parallel forces is 12 N . The distance between the forces is 18 m . If one of the force is 4 N , then the distance of the resultant from the smaller force is
(a) 4 m
(b) 8 m
(c) 12 m
(d) None of these
56. A heavy uniform rod, 15 cm long, is suspended from a fixed point by strings fastened to its ends, their lengths being 9 and 12 cm . If θ be the angle at which the rod is inclined to the vertical, then $\sin \theta=$
(a) $\frac{4}{5}$
(b) $\frac{8}{9}$
(c) $\frac{19}{20}$
(d) $\frac{24}{25}$
57. A light string of length I is fastened to two points A and B at the same level at a distance ' a ' apart. A ring of weight W can slide on the string, and a horizontal force P is applied to it such that the ring is in equilibrium vertically below B. The tension in the string is equal to
(a) $\frac{a W}{\mathrm{I}}$
(b) laW
(c) $\frac{W\left(\left.\right|^{2}+a^{2}\right)}{\left.2\right|^{2}}$
(d) $\frac{2 W\left(1^{2}+a^{2}\right)}{2 a^{2}}$
58. If $y=\frac{\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}}$, then $\frac{d y}{d x}=$
(a) $\frac{a y}{x \sqrt{a^{2}-x^{2}}}$
(b) $\frac{a y}{\sqrt{a^{2}-x^{2}}}$
(c) $\frac{a y}{x \sqrt{x^{2}-a^{2}}}$
(d) None of these
59. If $y=\left(x \cot ^{3} x\right)^{3 / 2}$, then $d y / d x=$
(a) $\frac{3}{2}\left(x \cot ^{3} x\right)^{1 / 2}\left[\cot ^{3} x-3 x \cot ^{2} x \operatorname{cosec}^{2} x\right]$
(b) $\frac{3}{2}\left(x \cot ^{3} x\right)^{1 / 2}\left[\cot ^{2} x-3 x \cot ^{2} x \operatorname{cosec}^{2} x\right]$
(c) $\frac{3}{2}\left(x \cot ^{3} x\right)^{1 / 3}\left[\cot ^{3} x-3 x \operatorname{cosec}^{2} x\right]$
(d) $\frac{3}{2}\left(x \cot ^{3} x\right)^{3 / 2}\left[\cot ^{3} x-3 x \operatorname{cosec}^{2} x\right]$
60. $\frac{d}{d x}\left\{\cos \left(\sin x^{2}\right)\right\}=$
(a) $\sin \left(\sin x^{2}\right) \cdot \cos x^{2} \cdot 2 x$
(b) $-\sin \left(\sin x^{2}\right) \cdot \cos x^{2} \cdot 2 x$
(c) $-\sin \left(\sin x^{2}\right) \cdot \cos ^{2} x \cdot 2 x$
(d) None of these
61. If $A=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then $A^{2}=$
(a) $\left[\begin{array}{ll}\cos 2 \alpha & \sin 2 \alpha \\ \sin 2 \alpha & \cos 2 \alpha\end{array}\right]$
(b) $\left[\begin{array}{cc}\cos 2 \alpha & -\sin 2 \alpha \\ \sin 2 \alpha & \cos 2 \alpha\end{array}\right]$
(c) $\left[\begin{array}{rr}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]$
(d) $\left[\begin{array}{cc}-\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & -\cos 2 \alpha\end{array}\right]$
62. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & 3 & -1 \\ 3 & 1 & 2\end{array}\right]$ and I is a unit matrix of $3^{\text {rd }}$ order, then $\left(A^{2}+91\right)$ equals
(a) 2 A
(b) 4 A
(c) 6 A
(d) None of these
63. If $A=\left[\begin{array}{cc}1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1\end{array}\right]$ and $A B=1$, then $B=$
(a) $\cos ^{2} \frac{\theta}{2} \cdot A$
(b) $\cos ^{2} \frac{\theta}{2} \cdot \mathrm{~A}^{\top}$
(c) $\cos ^{2} \frac{\theta}{2}$.I
(d) None of these
64. If $A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$ and I is the identity matrix of order 2 , then $(A-2 I)(A-3 I)=$
(a) 1
(b) 0
(c) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
65. If $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$, then
(a) $A^{3}+3 A^{2}+A-9 I_{3}=0$
(b) $A^{3}-3 A^{2}+A+9 I_{3}=0$
(c) $A^{3}+3 A^{2}-A+9 I_{3}=0$
(d) $A^{3}-3 A^{2}-A+9 I_{3}=0$
66. If A and B are two sets then $(A-B) \cup(B-A) \cup(A$ $\cap B$) is equal to
(a) $A \cup B$
(b) $A \cap B$
(c) A
(d) B^{\prime}
67. Let A and B be two sets then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$ is equal to
(a) A^{\prime}
(b) A
(c) B^{\prime}
(d) None of these
68. Let U be the universal set and $A \cup B \cup C=U$. Then $\{(A-B) \cup(B-C) \cup(C-A)\}$ is equal to
(a) $A \cup B \cup C$
(b) $A \cup(B \cap C)$
(c) $A \cap B \cap C$
(d) $A \cap(B \cup C)$
69. If $n(A)=3, n(B)=6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to
(a) 3
(b) 9
(c) 6
(d) None of these
70. Let A and B be two sets such that $n(A)=0.16, n(B)=0.14, n(A \cup B)=0.25$. Then $n(A \cap B)$ is equal to
(a) 0.3
(b) 0.5
(c) 0.05
(d) None of these
71. R is a relation over the set of real numbers and it is given by $n m \geq 0$. Then R is
(a) Symmetric and transitive
(b) Reflexive and symmetric
(c) A partial order relation
(d) An equivalence relation
72. In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R
(a) Is reflexive
(b) Is symmetric
(c) Is transitive
(d) Possesses all the above three properties
73. The relation "congruence modulo m " is
(a) Reflexive only
(b) Transitive only
(c) Symmetric only
(d) An equivalence relation
74. Domain of the function $\sqrt{\log \left\{\left(5 x-x^{2}\right) / 6\right\}}$ is
(a) $(2,3)$
(b) $[2,3]$
(c) $[1,2]$
(d) $[1,3]$
75. Domain of the function $\sqrt{2-x}-\frac{1}{\sqrt{9-x^{2}}}$ is
(a) $(-3,1)$
(b) $[-3,1]$
(c) $(-3,2]$
(d) $[-3,1)$
76. $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}=$
(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
77. $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta-\sin \theta}{\sin \theta}=$
(a) 1
(b) 2
(c) $1 / 3$
(d) $3 / 2$
78. If $f(x)=\left\{\begin{array}{ll}\frac{1-(x)}{1+x}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$, then the value of $f(|2 k|)$ will be (where [] shows the greatest integer function)
(a) Continuous at $\mathrm{x}=-1$
(b) Continuous at $\mathrm{x}=0$
(c) Discontinuous at $x=\frac{1}{2}$
(d) All of these
79. Function $f(x)=\frac{1-\cos 4 x}{8 x^{2}}$, where $x \neq 0$ and $f(x)=k$ where $x=0$ is a continous function at $x=0$ then the value of k will be
(a) $\mathrm{k}=0$
(b) $\mathrm{k}=1$
(c) $\mathrm{k}=-1$
(d) None of these
80. The function $f(x)=\left\{\begin{array}{cc}e^{2 x}-1, & x \leq 0 \\ a x+\frac{b x^{2}}{2}-1, & x>0\end{array}\right.$ is continuous and differentiable for
(a) $a=1, b=2$
(b) $a=2, b=4$
(c) $a=2$, any b
(d) Any a, b=4
81. If $\alpha \neq \beta$ but $\alpha^{2}=5 \alpha-3$ and $\beta^{2}=5 \beta-3$, then the equation whose roots are α / β and β / α is
(a) $3 x^{2}-25 x+3=0$
(b) $x^{2}+5 x-3=0$
(c) $x^{2}-5 x+3=0$
(d) $3 x^{2}-19 x+3=0$
82. Difference between the corresponding roots of $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ is same and $a \neq b$, then
(a) $a+b+4=0$
(b) $\mathrm{a}+\mathrm{b}-4=0$
(c) $\mathrm{a}-\mathrm{b}-4=0$
(d) $a-b+4=0$
83. Product of real roots of the equation $t^{2} x^{2}+|x|+9=0$
(a) Is always positive
(b) Is always negative
(c) Does notexist
(d) None of these
84. If the roots of the equation $12 x^{2}-m x+5=0$ are in the ratio $2: 3$, then $\mathrm{m}=$
(a) $5 \sqrt{10}$
(b) $3 \sqrt{10}$
(c) $2 \sqrt{10}$
(d) None of these
85. If one root of the equation $x^{2}+p x+q=0$ is $2+\sqrt{3}$, then values of p and q are
(a) $-4,1$
(b) 4, - 1
(c) $2, \sqrt{3}$
(d) $-2,-\sqrt{3}$
86. The condition that one root of the equation $a x^{2}+b x+c=0$ is three times the other is
(a) $b^{2}=8 a c$
(b) $3 b^{2}+16 \mathrm{ac}=0$
(c) $3 b^{2}=16 a c$
(d) $\mathrm{b}^{2}+3 \mathrm{ac}=0$
87. The equation whose roots are reciprocal of the roots of the equation $3 x^{2}-20 x+17=0$ is
(a) $3 x^{2}+20 x-17=0$
(b) $17 x^{2}-20 x+3=0$
(c) $17 x^{2}+20 x+3=0$
(d) None of these
88. If α, β are the roots of the equation $x^{2}+2 x+4=0$, then $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$ is equal to
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) 32
(d) $\frac{1}{4}$
89. The equation of the smallest degree with real coefficients having $1+i$ as one of the root is
(a) $x^{2}+x+1=0$
(b) $x^{2}-2 x+2=0$
(c) $x^{2}+2 x+2=0$
(d) $x^{2}+2 x-2=0$
90. The order of the differential equation whose solution is $x^{2}+y^{2}+2 g x+2 f y+c=0$, is
(a) 1
(b) 2
(c) 3
(d) 4
91. The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is
(a) 1
(b) 2
(c) 3
(d) 4
92. The order of the differential equation whose solution is $y=a \cos x+b \sin x+c e^{-x}$ is
(a) 3
(b) 2
(c) 1
(d) None of these
93. The differential equation of all circles of radius a is of order
(a) 2
(b) 3
(c) 4
(d) None of these
94. The differential equation of all circles in the first quadrant which touch the coordinate axes is of order
(a) 1
(b) 2
(c) 3
(d) None of these
95. Order and degree of differential equation $\frac{d^{2} y}{d x^{2}}=\left\{y+\left(\frac{d y}{d x}\right)^{2}\right\}^{1 / 4}$ are
(a) 4 and 2
(b) 1 and 2
(c) 1 and 4
(d) 2 and 4
96. If the position vectors of the points A, B, C be \mathbf{a}, \mathbf{b}, $3 \mathbf{a}-\mathbf{2 b}$ respectively, then the points A, B, C are
(a) Collinear
(b) Non-collinear
(c) Form a right angled triangle(d) None of these
97. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-collinear vectors such that for some scalars $x, y, z, x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{0}$, then
(a) $x=0, y=0, z=0$
(b) $x \neq 0, y \neq 0, z=0$
(c) $x=0, y \neq 0, z \neq 0$
(d) $x \neq 0, y \neq 0, z \neq 0$
98. The vectors $3 \mathbf{i}+\mathbf{j}-5 \mathbf{k}$ and $a \mathbf{i}+b \mathbf{j}-15 \mathbf{k}$ are collinear, if
(a) $a=3, b=1$
(b) $a=9, b=1$
(c) $a=3, b=3$
(d) $a=9, b=3$
99. The points with position vectors $60 \mathbf{i}+3 \mathbf{j}, 40 \mathbf{i}-8 \mathbf{j}$, ai-52 \mathbf{j} are collinear, if $a=$
(a) -40
(b) 40
(c) 20
(d) None of these
100. If O be the origin and the position vector of A be $4 \mathbf{i}+5 \mathbf{j}$, then a unit vector parallel to $\overrightarrow{O A}$ is
(a) $\frac{4}{\sqrt{41}} \mathrm{i}$
(b) $\frac{5}{\sqrt{41}} \mathrm{i}$
(c) $\frac{1}{\sqrt{41}}(4 \mathbf{i}+5 \mathbf{j})$
(d) $\frac{1}{\sqrt{41}}(4 \mathbf{i}-5 \mathbf{j})$
101. If the position vectors of the points A and B be $2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and $-2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$, then the line $A B$ is parallel to
(a) xy-plane
(b) yz-plane
(c) zx-plane
(d) None of these
102. The points with position vectors $10 \mathbf{i}+3 \mathbf{j}, 12 \mathbf{i}-5 \mathbf{j}$ and $a \mathbf{i}+11 \mathbf{j}$ are collinear, if $a=$
(a) -8
(b) 4
(c) 8
(d) 12
103. Three points whose position vectors are $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}$ and $\mathbf{a}+\mathrm{kb}$ will be collinear, if the value of k is
(a) Zero
(b) Only negative real number
(c) Only positive real number
(d) Every real number
104. If the position vectors of A, B, C, D are $2 \mathbf{i}+\mathbf{j}, \mathbf{i}-3 \mathbf{j}$, $3 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{i}+\lambda \mathbf{j}$ respectively and $\overrightarrow{A B}|\mid \overrightarrow{C D}$, then λ will be
(a) -8
(b) -6
(c) 8
(d) 6
105. The co-ordinates of the point where the line $\frac{x-6}{-1}=\frac{y+1}{0}=\frac{z+3}{4}$ meets the plane $x+y-z=3$ are
(a) $(2,1,0)$
(b) $(7,-1,-7)$
(c) $(1,2,-6)$
(d) $(5,-1,1)$
106. If a plane passes through the point $(1,1,1)$ and is perpendicular to the line $\frac{x-1}{3}=\frac{y-1}{0}=\frac{z-1}{4}$, then its perpendicular distance from the origin is
(a) $\frac{3}{4}$
(b) $\frac{4}{3}$
(c) $\frac{7}{5}$
(d) 1
107. The angle between the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+3}{-2}$ and the plane $x+y+4=0$, is
(a) 0°
(b) 30°
(c) 45°
(d) 90°
108. The equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,-7)$ is
(a) $x+y+z=1$
(b) $x+y+z=2$
(c) $x+y+z=0$
(d) None of these
109. The xy-plane divides the line joining the points $(-1$, $3,4)$ and $(2,-5,6)$
(a) Internally in the ratio $2: 3$
(b) Internally in the ratio $3: 2$
(c) Externally in the ratio $2: 3$
(d) Externally in the ratio $3: 2$
110. Under what condition does a straight line $\frac{x-x_{0}}{1}=$ $\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$ is parallel to the $x y$-plane
(a) $I=0$
(b) $\mathrm{m}=0$
(c) $\mathrm{n}=0$
(d) $\mathrm{I}=0, \mathrm{~m}=0$
111. If $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{7}{12}$, then the value of $P\left(A^{\prime} \cap B^{\prime}\right)$ is
(a) $\frac{7}{12}$
(b) $\frac{3}{4}$
(c) $\frac{1}{4}$
(d) $\frac{1}{6}$
112. In a city 20% persons read English newspaper, 40% read Hindi newspaper and 5\% read both newspapers. The percentage of non-reader either paper is
(a) 60%
(b) 35%
(c) 25%
(d) 45%
113. The probability that at least one of A and B occurs is 0.6 . If A and B occur simultaneously with probability 0.3 , then $P\left(A^{\prime}\right)+P\left(B^{\prime}\right)=$
(a) 0.9
(b) 1.15
(c) 1.1
(d) 1.2
114. The probability that a man will be alive in 20 years is $\frac{3}{5}$ and the probability that his wife will be alive in 20 years is $\frac{2}{3}$. Then the probability that at least one will be alive in 20 years, is
(a) $\frac{13}{15}$
(b) $\frac{7}{15}$
(c) $\frac{4}{15}$
(d) None of these
115. Given two mutually exclusive events A and B such that $P(A)=0.45$ and $P(B)=0.35$, then $P(A$ or $B)=$
(a) 0.1
(b) 0.25
(c) 0.15
(d) 0.8
116. If A and B are any two events, then $P(A \cup B)=$
(a) $P(A)+P(B)$
(b) $P(A)+P(B)+P(A \cap B)$
(c) $P(A)+P(B)-P(A \cap B)$
(d) $P(A) \cdot P(B)$
117. The value of θ lying between 0 and $\pi / 2$ and satisfying the equation $\left|\begin{array}{ccc}1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0$
(a) $\frac{7 \pi}{24}$ or $\frac{11 \pi}{24}$
(b) $\frac{5 \pi}{24}$
(c) $\frac{\pi}{24}$
(d) None of these
118. If $\cot (\alpha+\beta)=0$, then $\sin (\alpha+2 \beta)=$
(a) $\sin \alpha$
(b) $\cos \alpha$
(c) $\sin \beta$
(d) $\cos 2 \beta$
119. If n is any integer, then the general solution of the equation $\cos x-\sin x=\frac{1}{\sqrt{2}}$ is
(a) $\mathrm{x}=2 \mathrm{n} \pi-\frac{\pi}{12}$ or $\mathrm{x}=2 \mathrm{n} \pi+\frac{7 \pi}{12}$
(b) $\mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{12}$
(c) $\mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{12}$ or $\mathrm{x}=2 \mathrm{n} \pi-\frac{7 \pi}{12}$
(d) $\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{12}$ or $\mathrm{x}=\mathrm{n} \pi-\frac{7 \pi}{12}$
120. The general solution of $\sin x-\cos x=\sqrt{2}$, for any integer n is
(a) $n \pi$
(b) $2 n \pi+\frac{3 \pi}{4}$
(c) $2 n \pi$
(d) $(2 n+1) \pi$

* * *

