)

1

1.	$\cot^{-1}\left[\frac{\sqrt{1-\sin x} + \sqrt{1+\sin x}}{\sqrt{1-\sin x} - \sqrt{1+\sin x}}\right]$]=
	(a) $\pi - x$	(b) $2\pi - x$
	(c) $\frac{x}{2}$	(d) $\pi - \frac{x}{2}$
2.	The principal value of sin ⁻	$\left[\sin\left(\frac{2\pi}{3}\right)\right]$ is
	(a) $-\frac{2\pi}{3}$	(b) $\frac{2\pi}{3}$
	(c) $\frac{4\pi}{3}$	(d) None of these
3.	If $\theta = \tan^{-1} a, \phi = \tan^{-1} b$ and	d $ab = -1$, then $\theta - \phi =$
	(a) 0	(b) $\frac{\pi}{4}$
	(c) $\frac{\pi}{2}$	(d) None of these
4.	If the sides of triangle are of its incircle is	13, 14, 15, then the radius
	(a) $\frac{67}{2}$	(b) $\frac{65}{1}$
	8 (c) 4	4 (d) 24
5.	The inradius of the triangle	e whose sides are 3, 5, 6, is
	(a) $\sqrt{8/7}$	(b) $\sqrt{8}$
	(c) $\sqrt{7}$	(d) $\sqrt{7/8}$
6.	Let z, w be complex numb	pers such that $\overline{z} + i\overline{w} = 0$ and
	arg $zw = \pi$. Then arg z eq	uals
	(a) $5\pi/4$	(b) π/2
-	(c) $3\pi/4$	(d) $\pi/4$
7.	$ (+x)^{n} = C_{0} + C_{1}x + C_{2}$	$x^{-} + \dots + C_n x^{+}$, then the
	Value of $C_0 = C_2 + C_4 = C_6 + C_6$	$n = n\pi$
	(a) 2 ⁿ	(b) $2'' \cos \frac{m}{2}$
	(c) $2^n \sin \frac{n\pi}{2}$	(d) $2^{n/2} \cos \frac{n\pi}{4}$
8.	If $x = \cos\theta + i\sin\theta$ and $y =$	$=\cos\phi + i\sin\phi$, then
	$x^m y^n + x^{-m} y^{-n}$ is equal to	
	(a) $\cos(m\theta + n\phi)$	(b) $\cos(m\theta - n\phi)$
	(c) $2\cos(m\theta + n\phi)$	(d) $2\cos(m\theta - n\phi)$
9.	The value of $\sum_{r=1}^{8} \left(\sin \frac{2r\pi}{9} + \right)$	$+i\cos\frac{2r\pi}{9}$ jis
	(a) -1	(b) 1
	(C) i	(d) -i
(S)		22

110.0		
10.	If $T_0, T_1, T_2, \dots, T_n$ represer	nt the terms in the expansion
	of $(x+a)^n$,	then $(T_0 - T_2 + T_4)^2$
	$+(T_1 - T_3 + T_5)^2 =$	
	(a) $(x^2 + a^2)$	(b) $(x^2 + a^2)^n$
	(c) $(x^2 + a^2)^{1/n}$	(d) $(x^2 + a^2)^{-1/n}$
11.	For every positive intege	rn, 2 ⁿ < n! when
	(a) n < 4	(b) n ≥ 4
	(c) n < 3	(d) None of these
12.	m men and n women a	are to be seated in a row so
	that no two women sit	together. If $m > n$, then the
	number of ways in which	n they can be seated is
	(a) $\frac{m!(m+1)!}{(m-n+1)!}$	(b) $\frac{m!(n-1)!}{(m-n+1)!}$
	(m-1)!(m+1)!	
	(c) $\frac{(m-n+1)!}{(m-n+1)!}$	(d) None of these
13.	A five digit number divis	ible by 3 has to formed using
	the numerals 0, 1, 2, 3	, 4 and 5 without repetition.
	The total number of wa	lys in which this can be done
	IS (a) 216	(b) 240
	(c) 600	(d) 3125
14.	The centre of the circle	e passing through (0, 0) and
	(1, 0) and touching the c	circle $x^2 + y^2 = 9$ is
2	(a) $(1 \ 1)$	(b) $\begin{pmatrix} 1 & \sqrt{2} \end{pmatrix}$
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	$(0) \left(\frac{1}{2}, -\sqrt{2}\right)$
	(c) $\left(\frac{3}{4},\frac{1}{4}\right)$	(d) $\left(\frac{1}{4},\frac{3}{4}\right)$
	$(2^{2}2)$	(2'2)
15.	If $\left(m_{i}, \frac{1}{m_{i}}\right)$, $i = 1, 2, 3, 4$ are	con-cyclic points, then the
	value of $m_1.m_2.m_3.m_4$ is	
	(a) 1	(b) – 1
	(c) 0	(d) None of these
16.	The equation of the pa	rabola with its vertex at the
	origin, axis on the y-axis $(6 - 2)$ is	and passing through the point
	(0, -3) is (a) $y^2 = 12x \pm 6$	(b) $v^2 - 12v$
	(a) $y = 12x + 0$ (c) $x^2 = -12y$	(d) $x^2 = 12y$
17	(c) $x = -i2y$	(d) $y = -12x + 0$
	(a) $(0 - 2a)$ and $v - 2a$	(h) (0.2a) and $v = -2a$
	(c) $(2a \ 0)$ and $x = -2a$	(d) $(-2a)$ (d) and $x - 2a$
	(c) (2a, 0) and $\lambda = -2a$	$(\alpha) = (2\alpha, 0) \text{ and } \lambda - 2\alpha$

* TARA

18. A hyperbola passes through the points (3, 2) and (a) n (-17, 12) and has its centre at origin and transverse (c) n! axis is along x-axis. The length of its transverse axis is (a) 2 (b) 4 $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y$ is equal to (c) 6 (d) None of these 19. The locus of the point of intersection of the lines (a) 0 $\sqrt{3}x - y - 4\sqrt{3}k = 0$ and $\sqrt{3}kx + ky - 4\sqrt{3} = 0$ for (c) -1 different value of k is (a) Circle (b) Parabola (c) Hyperbola (d) Ellipse 20. If the centre, one of the foci and semi-major axis of (a) $\frac{5}{4}$ an ellipse be (0, 0), (0, 3) and 5 then its equation is (a) $\frac{x^2}{16} + \frac{y^2}{25} = 1$ (b) $\frac{x^2}{25} + \frac{y^2}{16} = 1$ (c) 4 28. (c) $\frac{x^2}{0} + \frac{y^2}{25} = 1$ (d) None of these 21. The equation of the ellipse whose one of the vertices is (0,7) and the corresponding directrix is y = 12, is (a) $\frac{5}{2}$ sq cm/min (a) $95x^2 + 144y^2 = 4655$ (b) $144x^2 + 95y^2 = 4655$ (c) 10 sq cm/min (c) $95x^2 + 144y^2 = 13680$ (d) None of these 22. The derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at x = 0, is (a) $\frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) 1 **23.** If $y^2 = p(x)$ is a polynomial of degree three, then **30.** $\int \frac{dx}{\sin x + \cos x} =$ $2\frac{d}{dx}\left\{y^3.\frac{d^2y}{dx^2}\right\} =$ (b) p''(x).p'''(x)(d) Constant (a) p'''(x) + p'(x)(c) p(x).p'''(x)(d) Constant 24. Let f(x) and g(x) be two functions having finite nonzero 3^{rd} order derivatives f''(x) and g'''(x) for all, $x \in R$. If f(x)g(x) = 1 for all $x \in R$, then $\frac{f''}{f'} - \frac{g''}{a'}$ is equal to (a) $3\left(\frac{f''}{a} - \frac{g''}{f}\right)$ (b) $3\left(\frac{f''}{f} - \frac{g''}{a}\right)$ (c) $3\left(\frac{g''}{a} - \frac{f''}{a}\right)$ (d) $3\left(\frac{f''}{f} - \frac{g''}{f}\right)$

25. If $I_n = \frac{d^n}{dx^n} (x^n \log x)$, then $I_n - nI_{n-1} =$

- I A RA

- (b) n-1(d) (n-1)!**26.** If $x = \sin t$ and $y = \sin pt$, then the value of
- (b) 1 (d) $\sqrt{2}$ **27.** Let $f: (0, +\infty) \to R$ and $F(x) = \int_{x}^{x} f(t) dt$. If $F(x^2) = x^2(1 + x)$, then f(4) equals (b) 7 (d) 2 The volume of a spherical balloon is increasing at the
- rate of 40 cubic centrimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 8 centimetre, is
 - (b) 5 sq cm/min
 - (d) 20 sq cm/min

29. If
$$\int \frac{dx}{1+\sin x} = \tan\left(\frac{x}{2}+a\right)+b$$
, then
(a) $a = \frac{\pi}{4}$, $b = 3$
(b) $a = -\frac{\pi}{4}$, $b = 3$
(c) $a = \frac{\pi}{4}$, $b = \text{arbitrary constant}$

(d)
$$a = -\frac{\pi}{4}$$
, $b = \text{arbitrary constant}$

- (a) $\log \tan\left(\frac{\pi}{8} + \frac{x}{2}\right) + c$ (b) $\log \tan\left(\frac{\pi}{8} \frac{x}{2}\right) + c$ (c) $\frac{1}{\sqrt{2}}\log \tan \left(\frac{\pi}{8} + \frac{x}{2}\right) + c$ (d) None of these
- **31.** The locus of P such that area of $\triangle PAB = 12sq$. units, where A(2,3) and B(-4,5) is
 - (a) (x+3y-1)(x+3y-23) = 0
 - (b) (x+3y+1)(x+3y-23) = 0
 - (c) (3x + y 1)(3x + y 23) = 0
 - (d) (3x + y + 1)(3x + y + 23) = 0

www.tarainstitute.in

TARA/NDA-NA/Mathematics/10

3 32. The position of a moving point in the XY-plane at time t is given by $\left((u\cos\alpha)t,(u\sin\alpha)t-\frac{1}{2}gt^2\right)$, where u_{α} , g are constants. The locus of the moving point is (a) A circle (b) A parabola (c) An ellipse (d) None of these **33.** If $A(\cos\alpha, \sin\alpha)$, $B(\sin\alpha, -\cos\alpha)$, C(1, 2) are the vertices of a $\triangle ABC$, then as α varies, the locus of its centroid is (b) $3(x^2 + y^2) - 2x - 4$ (c) $x^2 + y^2 - 2x - 4y +$ (d) None of these 34. The equations of two equal sides of an isosceles triangle are 7x - y + 3 = 0 and x + y - 3 = 0 and the third side passes through the point (1, -10). The equation of the third side is (a) x - 3y - 31 = 0 but not 3x + y + 7 = 0(b) 3x + y + 7 = 0 but not x - 3y - 31 = 0(c) 3x + y + 7 = 0 or x - 3y - 31 = 0(d) Neither 3x + y + 7 nor x - 3y - 31 = 0**35.** The graph of the function $\cos x \cos(x+2) - \cos^2(x+1)$ is (a) A straight line passing through $(0, -\sin^2 1)$ with slope 2 (b) A straight line passing through (0, 0) (c) A parabola with vertex $(1, -\sin^2 1)$ (d) A straight line passing through the point $\left(\frac{\pi}{2},-\sin^2 1\right)$ and parallel to the x-axis 36. If the equation of base of an equilateral triangle is 2x - y = 1 and the vertex is (-1, 2), then the length of the side of the triangle is (b) $\frac{2}{\sqrt{15}}$

37. The general value of θ satisfying the equation $2\sin^2\theta - 3\sin\theta - 2 = 0$ is

 $\sqrt{\frac{8}{15}}$

(C)

(d) $\sqrt{\frac{15}{2}}$

(b) $n\pi + (-1)^n \frac{\pi}{2}$ (a) $n\pi + (-1)^n \frac{\pi}{4}$ (c) $n\pi + (-1)^n \frac{5\pi}{4}$ (d) $n\pi + (-1)^n \frac{7\pi}{4}$

$$(+ 1 = 0)$$

 $(y + 1 = 0)$
 $(+ 3 = 0)$

INSTITUT

- ie
- ٢ are the same
- (c) Breadth of the river is half of the height of the tower
- (d) None of the above
- AB is a vertical pole resting at the end A on the level 42. ground. P is a point on the level ground such that AP = 3 AB. If C is the mid-point of AB and CB subtends an angle β at P, the value of tan β is

(a)
$$\frac{18}{19}$$
 (b) $\frac{3}{19}$

(c)
$$\frac{1}{6}$$
 (d) None of these

43. If a_1, a_2, \ldots, a_n are in A.P. with common difference, d, then the sum of the following series is $\sin d(\csc a_1 . \cos c a_2 + \csc a_2 . \csc a_3 + \dots$

+cosec a_{n-1} cosec a_n)

- (a) $\sec a_1 \sec a_n$ (b) $\cot a_1 - \cot a_n$
- (c) $\tan a_1 \tan a_n$ (d) cosec a_1 – cosec a_n
- **44.** If the sum of the series 2+5+8+11..... is 60100, then the number of terms are

www.tarainstitute.com

38.

The

TARA/NDA-NA/Mathematics/10

of

the

equation

 $(\sqrt{3}-1)\sin\theta + (\sqrt{3}+1)\cos\theta = 2$ is (a) $2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12}$ (b) $n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{12}$ (c) $2n\pi \pm \frac{\pi}{4} - \frac{\pi}{12}$ (d) $n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{12}$ **39.** The general solution of $\tan 3x = 1$ is (b) $\frac{n\pi}{3} + \frac{\pi}{12}$ (a) $n\pi + \frac{\pi}{4}$ (d) $n\pi \pm \frac{\pi}{4}$ (C) nπ **40.** The general solution of $\sin^2 \theta \sec \theta + \sqrt{3} \tan \theta = 0$ is

solution

(a)
$$\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}, \theta = n\pi, n \in Z$$

(b) $\theta = n\pi, n \in Z$
(c) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}, n \in Z$
(d) $\theta = \frac{n\pi}{2}, n \in Z$

(D)
$$\theta = n\pi, n \in \mathbb{Z}$$

(C) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{2}, n \in \mathbb{Z}$

general

(d)
$$\theta = \frac{n\pi}{2}, n \in \mathbb{Z}$$

www.tarainstitute.in

\sim				
	(a) 100	(b) 200		
	(c) 150	(d) 250		
45.	The sum of all natural	numbers between	1 and	100
	which are negligible of (

- which are multiples of 3 is (a) 1680 (b) 1683
- (c) 1681 (d) 1682
- **46.** If one of the lines of the pair $ax^2 + 2hxy + by^2 = 0$ bisects the angle between positive directions of the axes, then a, b, h satisfy the relation
 - (a) a+b=2|h| (b) a+b=-2h
 - (c) a-b=2|h| (d) $(a-b)^2 = 4h^2$
- **47.** The lines joining the origin to the points of intersection of the line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually perpendicular, if
 - (a) $a^{2}(m^{2} + 1) = c^{2}$ (b) $a^{2}(m^{2} 1) = c^{2}$ (c) $a^{2}(m^{2} + 1) = 2c^{2}$ (d) $a^{2}(m^{2} - 1) = 2c^{2}$
- 48. Given

that

 $\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + a^{2})(x^{2} + b^{2})(x^{2} + c^{2})} = \frac{\pi}{2(a+b)(b+c)(c+a)}, \text{ then the value of } \int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + 4)(x^{2} + 9)} \text{ is}$ (a) $\frac{\pi}{60}$ (b) $\frac{\pi}{20}$ (c) $\frac{\pi}{40}$ (d) $\frac{\pi}{80}$

- **49.** If $l(m,n) = \int_0^1 t^m (1+t)^n dt$, then the expression for l(m,n) in terms of l(m+1, n-1) is
- (a) $\frac{2^n}{m+1} \frac{n}{m+1} l(m+1, n-1)$ (b) $\frac{n}{m+1} l(m+1, n-1)$ (c) $\frac{2^n}{m+1} + \frac{n}{m+1} l(m+1, n-1)$ (d) $\frac{m}{n+1} l(m+1, n-1)$ 50. $\lim_{n \to \infty} \frac{1+2^4 + 3^4 + \dots + n^4}{n^5} - \lim_{n \to \infty} \frac{1+2^3 + 3^3 + \dots + n^3}{n^5} =$ (a) $\frac{1}{30}$ (b) Zero
 - (c) $\frac{1}{4}$ (d) $\frac{1}{5}$
- 51. The greatest and least magnitude of the resultant of two forces of constant magnitude are F and G. When the forces act an angle 2α, the resultant in magnitudes is equal to

- (a) $\sqrt{F^2 \cos^2 \alpha} + G^2 \sin^2 \alpha$
- (b) $\sqrt{F^2 \sin \alpha + G^2 \cos^2 \alpha}$
- (c) $\sqrt{F^2 + G^2}$
- (d) $\sqrt{F^2 G^2}$

(c) 2P = Q

- **52.** A horizontal force F is applied to a small object P of mass m on a smooth plane inclined to the horizon at an angle θ . If F is just enough to keep P in equilibrium, then F =
 - (a) $mg\cos^2\theta$ (b) $mg\sin^2\theta$
 - (c) $mg\cos\theta$ (d) $mg\tan\theta$
- **53.** If the position of the resultant of two like parallel forces P and Q is unaltered, when the positions of P and Q are interchanged, then
 - (a) P = Q
 - (d) None of these

(b) P = 2Q

- **54.** Three parallel forces P,Q, R act at three points A,B, C of a rod at distances of 2m, 8m and 6m respectively from one end. If the rod be in equilibrium, then P:Q:R =
 - (a) 1:2:3 (b) 2:3:1
 - (c) 3:2:1 (d) None of these
- **55.** The resultant of two like parallel forces is 12N. The distance between the forces is 18m. If one of the force is 4N, then the distance of the resultant from the smaller force is
 - (a) 4m (b) 8m
 - (c) 12m (d) None of these
- **56.** A heavy uniform rod, 15cm long, is suspended from a fixed point by strings fastened to its ends, their lengths being 9 and 12 cm. If θ be the angle at which the rod is inclined to the vertical, then $\sin \theta =$

(a)	$\frac{4}{5}$	(b)	<u>8</u> 9
(c)	$\frac{19}{20}$	(d)	24 25

57. A light string of length I is fastened to two points A and B at the same level at a distance 'a' apart. A ring of weight W can slide on the string, and a horizontal force P is applied to it such that the ring is in equilibrium vertically below B. The tension in the string is equal to

(a)
$$\frac{aW}{l}$$
 (b) laW
(c) $\frac{W(l^2 + a^2)}{2l^2}$ (d) $\frac{2W(l^2 + a^2)}{2a^2}$

X RARA

4

5

58.	If $y = \frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}}$, then	$\frac{dy}{dx} =$
	(a) $\frac{ay}{x\sqrt{a^2-x^2}}$	(b) $\frac{ay}{\sqrt{a^2-x^2}}$
	(c) $\frac{ay}{x\sqrt{x^2-a^2}}$	(d) None of these
59 .	If $y = (x \cot^3 x)^{3/2}$, then $dy/2$	dx =
	(a) $\frac{3}{2}(x \cot^3 x)^{1/2} [\cot^3 x - 3]$	$3x \cot^2 x \csc^2 x$]
	(b) $\frac{3}{2}(x \cot^3 x)^{1/2} [\cot^2 x - 3]$	$x \cot^2 x \csc^2 x$]
	(c) $\frac{3}{2}(x \cot^3 x)^{1/3} [\cot^3 x - 3]$	$x \operatorname{cosec}^2 x$]
	(d) $\frac{3}{2}(x \cot^3 x)^{3/2} [\cot^3 x - 3]$	$x \operatorname{cosec}^2 x$]
60.	$\frac{d}{dx} \{\cos(\sin x^2)\} =$	
	(a) $\sin(\sin x^2) \cdot \cos x^2 \cdot 2x$	(b) $-\sin(\sin x^2).\cos x^2.2x$
	(c) $-\sin(\sin x^2).\cos^2 x.2x$	(d) None of these
61.	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then	A ² =
	(a) $\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix}$	(b) $\begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix}$
	(c) $\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{bmatrix}$	(d) $\begin{bmatrix} -\cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & -\cos 2\alpha \end{bmatrix}$
62.	If $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 3 & -1 \\ 3 & 1 & 2 \end{bmatrix}$ and I is	s a unit matrix of 3 rd order,
	then $(A^2 + 9I)$ equals	
	(a) 2A	(b) 4A
	(C) 6A $\begin{bmatrix} 1 & \tan\theta/2 \end{bmatrix}$	(a) None of these
63.	If $A = \begin{bmatrix} 1 & \tan\theta / 2 \\ -\tan\theta / 2 & 1 \end{bmatrix}$	and $AB = I$, then $B =$
	(a) $\cos^2\frac{\theta}{2}.A$	(b) $\cos^2\frac{\theta}{2}.A^T$
	(c) $\cos^2\frac{\theta}{2}.I$	(d) None of these
64.	If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ and I is the	identity matrix of order 2,
	then (A-2I)(A-3I) =	
	(a) I	(b) O
	(c) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	(d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

65.	If $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$, then
	(a) $A^3 + 3A^2 + A - 9I_3 = O$
	(b) $A^3 - 3A^2 + A + 9I_3 = O$
	(c) $A^3 + 3A^2 - A + 9I_3 = O$
	(d) $A^3 - 3A^2 - A + 9I_3 = O$
66.	If A and B are two sets then $(A - B) \cup (B - A) \cup (A)$
	\cap B) is equal to
	(a) $A \cup B$ (b) $A \cap B$
67.	Let A and B be two sets then $(A \cup B)' \cup (A' \cap B)$ is
	equal to
	(a) A' (b) A (c) P' (d) None of these
68.	Let U be the universal set and $A \cup B \cup C = U$. Then
	$\{(A-B)\cup(B-C)\cup(C-A)\}'$ is equal to
	(a) $A \cup B \cup C$ (b) $A \cup (B \cap C)$
10	(c) $A \cap B \cap C$ (d) $A \cap (B \cup C)$
69.	If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \sqcup B$ is equal to
	(a) 3 (b) 9
	(c) 6 (d) None of these
70.	Let A and B be two sets such that
	$n(A) = 0.16, n(B) = 0.14, n(A \cup B) = 0.25$. Then $n(A \cap B)$
	Is equal to $(a) 0.3$ $(b) 0.5$
	(c) 0.05 (d) None of these
71.	R is a relation over the set of real numbers and it is
	given by $nm \ge 0$. Then R is
	(a) Symmetric and transitive
	(b) Reflexive and symmetric
	(c) A partial order relation
	(d) An equivalence relation
72.	In order that a relation R defined on a non-empty set
	(a) Is reflexive
	(b) Is symmetric
	(c) Is transitive
	(d) Possesses all the above three properties
73.	The relation "congruence modulo m" is
	(a) Reflexive only
	(b) Transitive only
	(c) Symmetric only
	(d) An equivalence relation

* TARA

=

6

(a) $(2, 3)$ (b) $[2, 3]$ (c) $[1, 2]$ (d) $[1, 3]$ 75. Domain of the function $\sqrt{2-x} - \frac{1}{\sqrt{9-x^2}}$ is (a) $(-3, 1)$ (b) $[-3, 1]$ (c) $(-3, 2]$ (d) $[-3, 1]$ (c) $(-3, 2]$ (d) $\frac{1}{-3}$ 76. $\lim_{\theta \to 0} \frac{1-\cos\theta}{\theta^2} =$ (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) $1/3$ (d) $3/2$ 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \ne \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	74.	Domain of the function $\sqrt{\log(5)}$	$(x - x^2)/6$ is
(c) [1, 2] (d) [1, 3] 75. Domain of the function $\sqrt{2-x} - \frac{1}{\sqrt{9-x^2}}$ is (a) (-3, 1) (b) [-3, 1] (c) (-3, 2] (d) [-3, 1) 76. $\lim_{\theta \to 0} \frac{1-\cos\theta}{\theta^2} =$ (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = -1$ (c) Discontinuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} \frac{e^{2x} - 1}{ax + \frac{bx^2}{2} - 1}, & x \leq 0 \\ ax + \frac{bx^2}{2} - 1 \\ x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) (2, 3) (b)	[2, 3]
75. Domain of the function $\sqrt{2 - x} - \frac{1}{\sqrt{9 - x^2}}$ is (a) (-3, 1) (b) [-3, 1] (c) (-3, 2] (d) [-3, 1) 76. $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2} =$ (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\theta \to 0} \frac{\sin \theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1 - (x)}{1 + x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ 1 (c) Cnitinuous at $x = -1$ (c) Discontinuous at $x = 0$ (c) Discontinuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2$, any b (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) [1, 2] (d)	[1, 3]
(a) (-3, 1) (b) [-3, 1] (c) (-3, 2] (c) [-3, 1] (c) (-3, 2] (c) [-3, 1] (c) $\frac{1-\cos\theta}{\theta^2} =$ (a) 1 (b) 2 (c) $\frac{1}{2}$ (c) $\frac{1}{4}$ (c) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c) $\frac{1}{4}$ (c) $\frac{1}{2}$ (c) $\frac{1}{2}$ (75.	Domain of the function $\sqrt{2-x}$	$-\frac{1}{\sqrt{9-x^2}}$ is
(c) $(-3, 2]$ (d) $[-3, 1]$ 76. $\lim_{\theta \to 0} \frac{1-\cos\theta}{\theta^2} =$ (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ 1 (c) Discontinuous at $x = -1$ (b) Continuous at $x = -1$ (c) Discontinuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) (-3, 1) (b)	[-3, 1]
76. $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2} =$ (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (c) 3/2 78. If $f(x) = \begin{cases} \frac{1 - (x)}{1 + x}, & x \neq -1 \\ 1 & , & x = -1 \end{cases}$, then the value of $f(2k)$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = -1$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continuous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2$, any b (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) (-3, 2] (d)	[-3, 1)
(a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\delta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1 - (x)}{1 + x}, & x \neq -1 \\ 1 & , & x = -1 \end{cases}$, then the value of $f(2k)$ 1 $(x) = x = -1$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continuous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2$, any b (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	76.	$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2} =$	
(c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & , & x = -1 \end{cases}$, then the value of $f(2k)$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) 1 (b)	2
(b) 2 (b) 4 77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & , & x = -1 \end{cases}$, then the value of $f(2k)$ 1 $, x = -1$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} \frac{e^{2x} - 1}{2}, & x \leq 0 \\ ax + \frac{bx^2}{2} - 1, & x > 0 \end{cases}$ continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2$, any b (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) $\frac{1}{2}$ (d)	<u>1</u>
77. $\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$ (a) 1 (b) 2 (c) 1/3 (c) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ 1 (b) Continuous at $x = -1$ (c) Discontinuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1, & x \le 0 \\ ax + \frac{bx^2}{2} - 1, & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$			4
(a) 1 (b) 2 (c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ 1 (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \leq 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	77.	$\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$	
(c) 1/3 (d) 3/2 78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & , & x = -1 \end{cases}$, then the value of $f(2k)$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = -1$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continuous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & , & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) 1 (b)	2
78. If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1 & x = -1 \end{cases}$, then the value of $f(2k)$ will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1-\cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \leq 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) $1/3$ (d)	3/2
will be (where [] shows the greatest integer function) (a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & , x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2$, any b (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	78.	If $f(x) = \begin{cases} \frac{1-(x)}{1+x}, & x \neq -1 \\ 1, & x = -1 \end{cases}$, then	the value of $f(2k)$
(a) Continuous at $x = -1$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & , x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		will be (where [] shows the grea	atest integer function)
(b) Continuous at $x = 0$ (c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continuous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) Continuous at $x = -1$	
(c) Discontinuous at $x = \frac{1}{2}$ (d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continuous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(b) Continuous at $x = 0$	
(d) All of these 79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & , x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , x > 0 \end{cases}$ continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) Discontinuous at $x = \frac{1}{2}$	
79. Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, where $x \neq 0$ and $f(x) = k$ where $x = 0$ is a continuous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \leq 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(d) All of these	
where $x = 0$ is a continous function at $x = 0$ then the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, \text{ any } b$ (d) Any $a, b = 4$ 81. If $\alpha \ne \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	79.	Function $f(x) = \frac{1 - \cos 4x}{8x^2}$, whe	ere $x \neq 0$ and $f(x) = k$
the value of k will be (a) $k = 0$ (b) $k = 1$ (c) $k = -1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & x \le 0 \\ ax + \frac{bx^2}{2} - 1 & x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \ne \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		where $x = 0$ is a continuous f	function at $x = 0$ then
(a) $k=0$ (b) $k=1$ (c) $k=-1$ (d) None of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & , x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \ne \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		the value of k will be	
(c) $k = -1$ (d) Note of these 80. The function $f(x) = \begin{cases} e^{2x} - 1 & , x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \ne \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) $k = 0$ (b) (c) $k = 1$ (d)	K = 1
80. The function $f(x) = \begin{cases} e^{-1} & , x \le 0 \\ ax + \frac{bx^2}{2} - 1 & , x > 0 \end{cases}$ is continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \ne \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) $K = -1$ (u)	None of these
continuous and differentiable for (a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	80.	The function $f(x) = \begin{cases} e^{-1} \\ ax + \frac{bx^2}{2} \\ -1 \end{cases}$	$x \ge 0$ is
(a) $a = 1, b = 2$ (b) $a = 2, b = 4$ (c) $a = 2, any b$ (d) Any $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		continuous and differentiable fo	Ar.
(c) $a = 2$, any b (d) Any $a, b = 4$ (e) $a = 2$, $any b$ (f) $a = 2, b = 4$ (g) $a = 2, any b$ (g) $a = 2, any b$ (h) Any $a, b = 4$ (h) $a \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ (e) $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) $a - 1b - 2$ (b)	a - 2b - 4
(c) $a = 2$, any b (d) ring $a, b = 4$ 81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(c) $a = 2$ any b (d)	a = 2, b = 4
81. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation whose roots are α / β and β / α is (a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	01	(c) $a = 2$, any b (d)	a^2 a^2 b^2 b^2 b^2
(a) $3x^2 - 25x + 3 = 0$ (b) $x^2 + 5x - 3 = 0$ (c) $x^2 - 5x + 3 = 0$ (d) $3x^2 - 19x + 3 = 0$ 82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	01.	If $\alpha \neq \beta$ but $\alpha^{-} = 5\alpha - 3$ and equation whose roots are α / β	p = 5p - 3, then the
(a) $3x^{2}-25x+3=0$ (b) $x^{2}+5x-3=0$ (c) $x^{2}-5x+3=0$ (d) $3x^{2}-19x+3=0$ 82. Difference between the corresponding roots of $x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is same and $a \neq b$, then (a) $a+b+4=0$ (b) $a+b-4=0$ (c) $a-b-4=0$ (d) $a-b+4=0$		(a) $3x^2 - 25x + 3 = 0$ (b)	$x^2 + 5x = 3 = 0$
82. Difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$		(a) $3x^2 - 23x + 3 = 0$ (b) (c) $x^2 - 5x + 3 = 0$ (d)	$3x^2 - 19x + 3 = 0$
$x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is same and $a \neq b$, then (a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - b - 4 = 0$ (d) $a - b + 4 = 0$	82.	Difference between the cor	responding roots of
then (a) $a+b+4=0$ (b) $a+b-4=0$ (c) $a-b-4=0$ (d) $a-b+4=0$		$x^{2} + ax + b = 0$ and $x^{2} + bx + a =$	= 0 is same and $a \neq b$,
(a) $a+b+4=0$ (b) $a+b-4=0$ (c) $a-b-4=0$ (d) $a-b+4=0$		then	
(c) $a-b-4=0$ (d) $a-b+4=0$		(a) $a+b+4=0$ (b)	a+b-4=0
R +		(c) $a - b - 4 = 0$ (d)	a - p + 4 = 0

83.	Product of real r $t^2x^2 + x + 9 = 0$	oots of the equation
	(a) Is always positive	(b) Is always negative
	(c) Does not exist	(d) None of these
84.	If the roots of the equat	ion $12x^2 - mx + 5 = 0$ are in
	the ratio $2:3$, then m =	
	(a) 5√10	(b) 3√10
	(c) 2√10	(d) None of these
85.	If one root of the equation	on $x^2 + px + q = 0$ is $2 + \sqrt{3}$,
	then values of p and q ar	e
	(a) – 4, 1	(b) 4, – 1
	(c) 2, √3	(d) $-2, -\sqrt{3}$
86.	The condition that of	ne root of the equation
	$ax^2 + bx + c = 0$ is three tin	nes the other is
	(a) $b^2 = 8ac$	(b) $3b^2 + 16ac = 0$
	(c) $3b^2 = 16ac$	(d) $b^2 + 3ac = 0$
87.	The equation whose roo	ts are reciprocal of the roots
	of the equation $3x^2 - 20x$	x + 17 = 0 is
	(a) $3x^2 + 20x - 17 = 0$	(b) $17x^2 - 20x + 3 = 0$
	(c) $17x^2 + 20x + 3 = 0$	(d) None of these
88.	If α , β are the roots of t	the equation $x^2 + 2x + 4 = 0$,
	then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to)
	(a) ¹	(b) ¹
	(u) <u>2</u>	(0) 2
	(c) 32	(d) $\frac{1}{4}$
89.	The equation of the	smallest degree with real
	coefficients having $1 + i$ a	as one of the root is
	(a) $x^2 + x + 1 = 0$	(b) $x^2 - 2x + 2 = 0$
	(c) $x^2 + 2x + 2 = 0$	(d) $x^2 + 2x - 2 = 0$
90 .	The order of the differen	tial equation whose solution
	is $x^2 + y^2 + 2gx + 2fy + c =$	= 0 , is
	(a) 1	(b) 2
	(c) 3	(d) 4
91.	The order of the differen	itial equation of all circles of
	radius r, having centre of	n y-axis and passing through
		(h) 2
	(d) 1 (c) 2	(d) 2
92	The order of the differen	tial equation whose solution
12.	is $v = a \cos x + b \sin x + co^{-1}$	^x is
	(a) 3	 (h) 2
	(a) 3 (c) 1	(d) None of these
	(~) ·	

🔆 TARA

=

7)	www.tarainstitute	e.com	TARA/ND4	A-NA/Mathematics/10
93.	The differential equation of all circles of	of radius a is of 10	03. Three	e points whose positi	on vectors are a + b , a - b
			and a	a + k b will be collinea	r, if the value of k is
	(a) 2 (b) 3	C 11	(a) Z	ero	
	(c) 4 (d) None c	of these	(b) C	Only negative real nur	nber
94.	The differential equation of all circ	les in the first	(c) C	Only positive real num	nber
	quadrant which touch the coordinate a	axes is of order	(d) E	very real number	
	(a) 1 (b) 2	10	04. If the	position vectors of A	., B, C, D are 2 i + j, i − 3 j,
	(c) 3 (d) None c	of these	3 i + 2	$2i$ and $i + \lambda i$ respect	tively and $\overrightarrow{AB} \mid \mid \overrightarrow{CD}$, then
95.	Order and degree of differen	itial equation	a wil	ll be	
	$d^{2}y \left[\left(dy \right)^{2} \right]^{1/4}$ are		(a) -	8	(b) -6
	$\frac{1}{dx^2} = \left\{ y + \left(\frac{1}{dx} \right) \right\}$ are		(c) 8	0	(d) 6
	(a) 1 and 2 (b) 1 and 2	· 1	05 The	co-ordinates of th	e noint where the line
	(a) $4 \text{ and } 2$ (b) $1 \text{ and } 2$	1	x-6	v+1 $z+3$.	
04	(c) I and 4 (d) 2 and 4		$\frac{n}{-1}$	$=\frac{1}{0}=\frac{1}{4}$ meet	s the plane $x + y - z = 3$ are
90.	in the position vectors of the points A	, B, C be a, b,	(a) (2	2, 1, 0)	(b) (7, -1, -7)
	3a - 2b respectively, then the points A	A, B, C are	(c) (1	1, 2, -6)	(d) (5, -1, 1)
	(a) Collinear (b) Non-co	ollinear 1	06. If a p	plane passes through	n the point (1,1,1) and is
	(c) Form a right angled triangle(d)	None of these	norna	ndicular to the line "	x-1 $y-1$ $z-1$ then its
97.	If a , b , c are non-collinear vectors suc	h that for some	perpe		$\frac{1}{3} = \frac{1}{0} = \frac{1}{4}$, then its
	scalars x, y, z, $x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = 0$, then		perpe	endicular distance from	m the origin is
	(a) $x = 0, y = 0, z = 0$ (b) $x \neq 0, y = 0$	$y \neq 0, \ z = 0$	$(a) = \frac{3}{2}$	3	(b) $\frac{4}{-}$
	(c) $x = 0, y \neq 0, z \neq 0$ (d) $x \neq 0, y \neq 0$	/≠0, z≠0	(u) _	1	3
98 .	The vectors $3\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ and a	i + b j – 15 k are	(c) 7	1	(d) 1
	collinear, if		5	5	
	(a) $a = 3, b = 1$ (b) $a = 9, k$	p=1 1	07 . The a	angle between the line	$e \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{2}$ and
	(c) $a = 3, b = 3$ (d) $a = 9, k$	0 = 3	ام ما		2 1 – 2
99 .	The points with position vectors 60 i	+3 j , 40 i -8 j ,,	the pi	lane $x + y + 4 = 0$, is	<i>4</i>
	ai-52j are collinear, if a=		(a) 0)°	(b) 30°
	(a) – 40 (b) 40		(C) 4	15°	(d) 90°
	(c) 20 (d) None c	of these 10	08 . The	equation of the p	plane containing the line
100.	If O be the origin and the position 4 i + 5 j, then a unit vector parallel to 0	vector of A be	$\frac{x+1}{-3}$	$=\frac{y-3}{2}=\frac{z+2}{1}$ and the	ne point (0, 7, –7) is
	(₁) 4 . (₁) 5 .		(a) x	x + y + z = 1	(b) $x + y + z = 2$
	(a) $\frac{1}{\sqrt{41}}$ (b) $\frac{1}{\sqrt{41}}$		(C) x	x + y + z = 0	(d) None of these
	(c) $\frac{1}{\sqrt{41}}(4i+5j)$ (d) $\frac{1}{\sqrt{41}}(4i+5j)$	i – 5 j) 10	09. The >	xy-plane divides the	line joining the points (-1,
101	$\sqrt{41}$	A and R bo	3, 4)	and (2, -5, 6)	
101.	$2\mathbf{i} + 3\mathbf{i} - \mathbf{k}$ and $-2\mathbf{i} + 3\mathbf{i} + 4\mathbf{k}$, then	the line AB is	(a) Ir		2:3
	parallel to		(D) Ir	nternally in the ratio	3:2
	(a) xy-plane (b) yz-plan	e	(C) E	xternally in the ratio	2:3
	(c) zx-plane (d) None c	of these	(d) E	xternally in the ratio	3:2
102.	The points with position vectors $10i +$	3j, 12i – 5j and 1 '	10. Unde	r what condition doe	s a straight line $\frac{x - x_0}{x} =$
	$a\mathbf{i} + 11\mathbf{j}$ are collinear, if $a =$				I
	(a) – 8 (b) 4		$\frac{y-y_0}{m}$	$\frac{1}{2} = \frac{z - z_0}{z}$ is parallel	to the xy-plane
	(c) 8 (d) 12		۱۱۱ ۱ (د)	- 0	(b) $m = 0$
	(0, 0) (0, 12		(a) 1 (c) n	-0	(d) $l = 0 m = 0$
				1 – 0	(u) = 0, m = 0
		— 💥 Tar			

www.tarainstitute.in

\sim		
111.	If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and	$P(A \cap B) = \frac{7}{12}$, then the
	value of $P(A' \cap B')$ is	12
	(a) $\frac{7}{12}$	(b) $\frac{3}{4}$
	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
112.	In a city 20% persons read read Hindi newspaper newspapers. The percent paper is	d English newspaper, 40% and 5% read both age of non-reader either
	(a) 60%	(b) 35%
	(c) 25%	(d) 45%
113.	The probability that at leas 0.6. If A and B occur simu 0.3, then $P(A') + P(B') =$	t one of A and B occurs is Itaneously with probability
	(a) 0.9	(b) 1.15
	(c) 1.1	(d) 1.2
114.	The probability that a man	will be alive in 20 years is
	$\frac{3}{5}$ and the probability that	his wife will be alive in 20
	years is $\frac{2}{3}$. Then the proba	ability that at least one will
	be alive in 20 years, is	
	(a) $\frac{13}{15}$	(b) $\frac{7}{15}$
	(c) $\frac{4}{15}$	(d) None of these
115.	Given two mutually exclusions that $P(A) = 0.45$ and $P(B) = 0.45$	sive events A and B such = 0.35, then P (A or B) =
	(a) 0.1	(b) 0.25
	(c) 0.15	(d) 0.8
116.	If A and B are any two even	nts, then $P(A \cup B) =$
	(a) $P(A) + P(B)$	
	(b) $P(A) + P(B) + P(A \cap B)$	
	(c) $P(A) + P(B) - P(A \cap B)$	
	(d) P(A) . P(B)	
117.	The value of θ lying b satisfying the	etween 0 and $\pi/2$ and e equation
	$\begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4 \sin^2 \theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin^2 \theta \end{vmatrix}$	$\begin{vmatrix} 4\theta \\ 14\theta \\ \sin 4\theta \end{vmatrix} = 0$
	(a) $\frac{7\pi}{24}$ or $\frac{11\pi}{24}$	(b) $\frac{5\pi}{24}$
	(c) $\frac{\pi}{24}$	(d) None of these

(a)
$$\sin \alpha$$
 (b) $\cos \alpha$
(c) $\sin \beta$ (d) $\cos 2\beta$
119. If n is any integer, then the general solution of the equation $\cos x - \sin x = \frac{1}{\sqrt{2}}$ is
(a) $x = 2n\pi - \frac{\pi}{12}$ or $x = 2n\pi + \frac{7\pi}{12}$
(b) $x = n\pi \pm \frac{\pi}{12}$
(c) $x = 2n\pi + \frac{\pi}{12}$ or $x = 2n\pi - \frac{7\pi}{12}$
(d) $x = n\pi + \frac{\pi}{12}$ or $x = n\pi - \frac{7\pi}{12}$
120. The general solution of $\sin x = \cos x = \sqrt{2}$ for any

118. If cot $(\alpha + \beta) = 0$, then $sin(\alpha + 2\beta) =$

- **120.** The general solution of $\sin x \cos x = \sqrt{2}$, for any integer n is
 - (a) $n\pi$ (b) $2n\pi + \frac{3\pi}{4}$
 - (C) 2nπ

TARA

(d) $(2n+1)\pi$

* * *

